Assessment of Leaching from Construction & Demolition Waste Concrete

Stefania Butera
Thomas H. Christensen
Thomas Astrup

Technical University of Denmark

DTU Environment
Department of Environmental Engineering
Introduction and background

- Construction & Demolition Waste (C&DW) concrete reused in road sub-bases:
 - Unbound applications

- Potential for leaching of heavy metals: need for assessment of emissions
 - Different experimental approaches
 - Often unrealistic compared to real life conditions
Objectives

- Implement a modified approach for assessment of metal leaching from concrete
 - Designed to mimic real life conditions in road sub-bases scenarios
 - Non-standard column (modified from CEN/TS 14405)

- Present preliminary results of Cr leaching
 - Critical element (van der Sloot, 2000; Kayhanian et al., 2009)

- Results will be used to assess the actual potential for soil and groundwater pollution in a broader perspective.
Materials
Crushed concrete

- Four crushed concrete samples
 - C2 and C4: pure crushed concrete from recycling facility, Copenhagen area
 - C6 and C7: leftovers from construction, central Denmark

- Crushed to 0-40 mm: typical for road construction
Methods

Column test

- Modified version of standard percolation test (CEN/TS 14405)
 - Particles size: as in road sub-bases
 - Downflow, intermittent watering
 - Non saturated conditions
 - Leachant flow rate \(\approx 10 \) times lower
 - Final L/S = 10L/kg (\(\approx 13 \) months)

Results available until L/S \(\approx 0.7 \) so far (\(\approx 3 \) weeks)
Preliminary results
Chromium concentration in the leachate

- Relatively high initial concentration
 - Quickly decreasing
- C6-C7 (fresher concrete) has much higher release than C2-C4
- Large differences in concentration in initial phases
 - Especially for C2-C4: heterogeneous material
 - Decrease down to similar level
Preliminary results
Comparison with literature

- Similar trend with high initial concentration and rapid drop
- Higher concentrations from standard column tests
 - Delay et al. (2007): initial concentrations \(\approx 500 \, \mu g/L \)
 - Kalbe et al. (2008): initial concentrations \(\approx 700 \, \mu g/L \)

More realistic experimental approach \(\rightarrow \) lower emission estimations
Preliminary results
Comparison with limit values

- Danish limit values for reuse of soil and residues in construction (10 μg/L) largely exceeded
- Limit values for reuse in presence of drainage systems (500 μg/L) not exceeded
- Only as a reference
 - Refers to a batch test
 - Limits do not apply to C&DW

"Cr: critical element?"
Discussion

- Cr leaching might represent an issue even after more realistic testing approaches

- How relevant is Cr leaching for soil and groundwater pollution?
 - Could it be reduced?
 - How long would it take?

- Need for broader, holistic perspective:
 - Alternative disposal is avoided
 - Resources are saved
 - Fate of Cr in the soil after release?

Avoid unnecessary restrictions
Conclusions

- Modified version of percolation tests
 - More realistic estimation of emissions in road sub-bases reuse applications
- Cr concentrations initially relatively high, followed by a fast decrease
 - Cr might be critical from environmental point of view
- Measured concentrations lower than literature values from standard CEN/TS 14405
 - Standard test might overestimate emissions
- Actual hazardousness of the emitted Cr should be on focus:
 - Is Cr(VI) or Cr(III) emitted?
 - Is there capacity in the soil for Cr(VI) reduction into less mobile and non toxic Cr(III)?
 - These aspects might contain vertical movement of Cr
 - Cr speciation test, soil reduction capacity and kinetics test implemented
Thank you for your attention!

Stefania Butera
stfb@env.dtu.dk

Technical University of Denmark

DTU Environment
Department of Environmental Engineering
References

