Geochemical modeling of Copper (II) speciation in MSWI bottom ash leachates

Susanna Toller, Joris W.J. van Schaik, Dan Berggren Kleja, Jon Petter Gustafsson, André van Zomeren, Rob N.J. Comans

Wascon 2012
Outline

• Introduction bottom ash and Cu leaching

• Literature findings on mechanisms

• DOC fractionation

• Titration results and modelling of Cu binding

• Conclusions
Introduction

- MSWI bottom ash is widely produced and increasingly re-used
- Leaching of Cu is one of the bottlenecks in re-use practice (NL, BE)
- Understanding of leaching mechanisms important for development of quality improvement technologies
Extraction of humic substances

Humic substances

Alkaline extraction

Humin (non-soluble)

(Soluble fraction)

Acidification

Humic acid (precipitate)

Fulvic acid (soluble)
Modelling Cu-DOC binding in MSWI bottom ash leachates (1)

Conclusion:
• Fulvic acid is present in bottom ash leachates
• Fulvic acid explains over 90% of observed Cu complexation
Modelling Cu-DOC binding in MSWI bottom ash leachates (2)

Conclusion:
• Fulvic acid explains 30% of Cu complexation
• Hydrophilic acids explain about 50% of observed Cu complexation

Arickx et al. (2007) Waste Manage. 27, 1422-1427
Modelling Cu-DOC binding in MSWI bottom ash leachates (3)

Conclusion:
• Hydrophilic acids contribute substantially to observed Cu complexation
• Fulvic acids are also important

Rationale for this study

No full consensus on the importance of different DOC fractions responsible for Cu complexation in MSWI bottom ash leachates:

- Van Zomeren and Comans (2004): fulvic acid explains Cu leaching
- Arickx et al. (2007): mainly hydrophilic acids and also fulvic acids explain Cu leaching
- Olsson et al. (2007): mainly hydrophilic acids and also fulvic acids explain Cu leaching

"If you can't beat them, join them!"
DOC fractionation method (ISO FDIS 12782-5)

→ Humic acids (HA)
 (precipitate at pH =1)

→ Fulvic acids (FA)
 (bind to DAX-8, desorbed with NaOH)

→ Hydrophobic neutrals (HON)
 (bind to DAX-8, not desorbed with NaOH)

→ Hydrophylc acids (Hy)

* van Zomeren & Comans, ES&T 41, 6755-6761 (2007)
Effects of different fractionation methods on DOC speciation

<table>
<thead>
<tr>
<th>Method</th>
<th>HA (mg C/L)</th>
<th>FA (mg C/L)</th>
<th>Hy (mg C/L)</th>
<th>DOC (mg C/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>van Zomeren & Comans, 2007</td>
<td>0.09</td>
<td>6.2</td>
<td>5.5</td>
<td>11.8</td>
</tr>
<tr>
<td>Leenheer, 1981</td>
<td>0.01</td>
<td>3.3</td>
<td>7.2</td>
<td>10.5</td>
</tr>
</tbody>
</table>

→ Higher FA and lower Hy with rapid batch method

→ Differences due to pH and amounts of DAX-8 resin used
pH-static copper titrations

- Experiments on cation-exchanged fractions
- Titrations at pH 6 and 8.5
- I = 0.12-0.18 M NaNO3
- CuT = 6E-7 to 1.5E-4 M
- Cu-ISE: Radiometer
- Experiments under N2
Copper titrations on bottom ash leachate

![Graphs showing copper titrations on bottom ash leachate at pH 8.5 and pH 6.](image)
Copper titrations on fractions

• Fulvic acid versus hydrophilic acids
• BA1 shows distinction in binding capacity at pH 8.5: FA gains in importance
Modelling of Cu titration data

BA1 leachate

log Cu bound (mol/kg DOC)

log\{Cu^{2+}\}

BA2 leachate

log Cu bound (mol/kg DOC)

log\{Cu^{2+}\}
Modelling of Cu titration data

- Good prediction at pH6, over prediction at pH 8.5
Modelling of Cu titration data

- Optimisation of parameters improves description: binding parameters of BA differ from natural organic matter
Putting results in perspective...

• Van Zomeren and Comans (2004): fulvic acid explains Cu leaching
 At high pH and in environment with competing ions

• Arickx et al. (2007): mainly hydrophilic acids and also fulvic acids
 explain Cu leaching
 Low resin/volume ratio to isolate DOC fractions

• Olsson et al. (2007): mainly hydrophilic acids and also fulvic acids
 explain Cu leaching
 Low resin/volume ratio to isolate DOC fractions; in environment
 without competing ions; pH 6-8.5
Conclusions

• Differences in DOC fractionation procedures (definition of Hy and FA)

• Hydrophilic acids do also contribute significantly to Cu binding in systems with no competing ions and at pH <8

• Indications for more important role of FA at higher pH values (phenolic sites)

• Variability in binding properties: MSWI bottom ash has specific properties that differ from natural DOC

• development of a generic parameter set for MSWI bottom ash
Thanks for your attention!
Major differences in fractionation schemes for NOM

- Thurman & Malcolm (1981); **column procedure** for natural waters, adopted by the International Humic Substances Society (IHSS)
- Leenheer (1981); **column procedure** for natural water
- Swift (1996); **column procedure** for soil samples, adopted by the IHSS
- van Zomeren & Comans (2007), **rapid batch procedure** for solid and aqueous samples

Fractionation Schemes

<table>
<thead>
<tr>
<th>Sample type</th>
<th>Aquatic</th>
<th>Aquatic</th>
<th>Aquatic/soil</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample pH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k’ (first) XAD-8 step</td>
<td>2</td>
<td>first adsorb on XAD-8, then acidify to pH2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Flow rate (bv/h)</td>
<td>100</td>
<td>50</td>
<td>4</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>30</td>
<td>-</td>
<td>15</td>
</tr>
<tr>
<td>Typical features:</td>
<td>Low sample pH: adsorption of HA, FA, HON on XAD-8 in first step; relatively large sample/resin ratio = less intense contact</td>
<td>Neutral sample pH: adsorption of HoB on XAD-8 in first step (desorbed with acid)</td>
<td>HA precipitated prior to contact with resin; low sample pH (=1); relatively low sample/resin ratio = more intense contact, relatively high FA and lower HA recovery</td>
<td>HA precipitated prior to contact with resin; low sample pH (=1); relatively high sample/resin ratio = similar HA and lower FA recovery than van Zomeren & Comans (2007)</td>
</tr>
</tbody>
</table>

$k' = \text{dimensionless ratio between sample and resin volume}$
First attempt to explain different conclusions

• Different fractionation methods were used

• Experiments under different conditions (e.g. leachate with and without competing ions)

• Differences in pH domain

• Cooperation started with SLU/Ecoloop to resolve this scientific challenge
Modelling of Cu titration data

![Graphs showing the relationship between log Cu bound (mol/kg DOC) and log Cu2+ for BA1-HY and BA2-HY samples.](image)
Modelling of Cu titration data

• Reasonable prediction, except for BA2 at pH8.5
Modelling of Cu titration data

- Optimised parameter set improves prediction for BA2
Modelling of Cu titration data

- Over prediction for FA. Optimisation leads to improvement at pH 8.5: less phenolic binding sites